Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cell Tissue Res ; 392(1): 135-148, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36201049

RESUMO

Chronic wasting disease (CWD) strains present a novel challenge to defining and mitigating this contagious prion disease of deer, elk, moose, and reindeer. Similar to strains of other prion diseases (bovine spongiform encephalopathy, sheep scrapie), CWD strains can affect biochemical and neuropathological properties of the infectious agent, and importantly interspecies transmission. To date, ten CWD strains have been characterized. The expanding range of CWD in North America and its presence in South Korea as well as Scandinavian countries will potentially result in millions of cervids infected with CWD; thus, novel strains will continue to emerge. In this review, we will summarize the characteristics of known CWD strains and describe the impact of prion protein gene polymorphisms on the generation of strains. We will also discuss the evidence that individual cervids can harbor more than one CWD strain, complicating strain analysis, and affecting selection and adaptation of strains in new hosts.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Bovinos , Animais , Ovinos , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/metabolismo , Cervos/metabolismo , Proteínas Priônicas/metabolismo , Príons/genética
2.
PLoS Pathog ; 17(7): e1009795, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310662

RESUMO

Chronic wasting disease (CWD) is a prion disease affecting cervids. Polymorphisms in the prion protein gene can result in extended survival of CWD-infected animals. However, the impact of polymorphisms on cellular prion protein (PrPC) and prion properties is less understood. Previously, we characterized the effects of a polymorphism at codon 116 (A>G) of the white-tailed deer (WTD) prion protein and determined that it destabilizes PrPC structure. Comparing CWD isolates from WTD expressing homozygous wild-type (116AA) or heterozygous (116AG) PrP, we found that 116AG-prions were conformationally less stable, more sensitive to proteases, with lower seeding activity in cell-free conversion and reduced infectivity. Here, we aimed to understand CWD strain emergence and adaptation. We show that the WTD-116AG isolate contains two different prion strains, distinguished by their host range, biochemical properties, and pathogenesis from WTD-116AA prions (Wisc-1). Serial passages of WTD-116AG prions in tg(CerPrP)1536+/+ mice overexpressing wild-type deer-PrPC revealed two populations of mice with short and long incubation periods, respectively, and remarkably prolonged clinical phase upon inoculation with WTD-116AG prions. Inoculation of serially diluted brain homogenates confirmed the presence of two strains in the 116AG isolate with distinct pathology in the brain. Interestingly, deglycosylation revealed proteinase K-resistant fragments with different electrophoretic mobility in both tg(CerPrP)1536+/+ mice and Syrian golden hamsters infected with WTD-116AG. Infection of tg60 mice expressing deer S96-PrP with 116AG, but not Wisc-1 prions induced clinical disease. On the contrary, bank voles resisted 116AG prions, but not Wisc-1 infection. Our data indicate that two strains co-existed in the WTD-116AG isolate, expanding the variety of CWD prion strains. We argue that the 116AG isolate does not contain Wisc-1 prions, indicating that the presence of 116G-PrPC diverted 116A-PrPC from adopting a Wisc-1 structure. This can have important implications for their possible distinct capacities to cross species barriers into both cervids and non-cervids.


Assuntos
Proteínas Priônicas/genética , Doença de Emaciação Crônica/genética , Animais , Arvicolinae , Cricetinae , Cervos , Mesocricetus , Camundongos , Polimorfismo de Nucleotídeo Único , Doença de Emaciação Crônica/transmissão
3.
PLoS Pathog ; 17(6): e1009703, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34181702

RESUMO

Prion diseases are transmissible neurodegenerative disorders that affect mammals, including humans. The central molecular event is the conversion of cellular prion glycoprotein, PrPC, into a plethora of assemblies, PrPSc, associated with disease. Distinct phenotypes of disease led to the concept of prion strains, which are associated with distinct PrPSc structures. However, the degree to which intra- and inter-strain PrPSc heterogeneity contributes to disease pathogenesis remains unclear. Addressing this question requires the precise isolation and characterization of all PrPSc subpopulations from the prion-infected brains. Until now, this has been challenging. We used asymmetric-flow field-flow fractionation (AF4) to isolate all PrPSc subpopulations from brains of hamsters infected with three prion strains: Hyper (HY) and 263K, which produce almost identical phenotypes, and Drowsy (DY), a strain with a distinct presentation. In-line dynamic and multi-angle light scattering (DLS/MALS) data provided accurate measurements of particle sizes and estimation of the shape and number of PrPSc particles. We found that each strain had a continuum of PrPSc assemblies, with strong correlation between PrPSc quaternary structure and phenotype. HY and 263K were enriched with large, protease-resistant PrPSc aggregates, whereas DY consisted primarily of smaller, more protease-sensitive aggregates. For all strains, a transition from protease-sensitive to protease-resistant PrPSc took place at a hydrodynamic radius (Rh) of 15 nm and was accompanied by a change in glycosylation and seeding activity. Our results show that the combination of AF4 with in-line MALS/DLS is a powerful tool for analyzing PrPSc subpopulations and demonstrate that while PrPSc quaternary structure is a major contributor to PrPSc structural heterogeneity, a fundamental change, likely in secondary/tertiary structure, prevents PrPSc particles from maintaining proteinase K resistance below an Rh of 15 nm, regardless of strain. This results in two biochemically distinctive subpopulations, the proportion, seeding activity, and stability of which correlate with prion strain phenotype.


Assuntos
Difusão Dinâmica da Luz/métodos , Fotometria/métodos , Proteínas PrPSc/análise , Proteínas PrPSc/química , Animais , Cricetinae , Hidrodinâmica , Camundongos , Estrutura Quaternária de Proteína
4.
Sci Rep ; 11(1): 11193, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045540

RESUMO

PrPC variation at residue 96 (G/S) plays an important role in the epidemiology of chronic wasting disease (CWD) in exposed white-tailed deer populations. In vivo studies have demonstrated the protective effect of serine at codon 96, which hinders the propagation of common CWD strains when expressed in homozygosis and increases the survival period of S96/wt heterozygous deer after challenge with CWD. Previous in vitro studies of the transmission barrier suggested that following a single amplification step, wt and S96 PrPC were equally susceptible to misfolding when seeded with various CWD prions. When we performed serial prion amplification in vitro using S96-PrPC, we observed a reduction in the efficiency of propagation with the Wisc-1 or CWD2 strains, suggesting these strains cannot stably template their conformations on this PrPC once the primary sequence has changed after the first round of replication. Our data shows the S96-PrPC polymorphism is detrimental to prion conversion of some CWD strains. These data suggests that deer homozygous for S96-PrPC may not sustain prion transmission as compared to a deer expressing G96-PrPC.


Assuntos
Cervos/genética , Proteínas Priônicas/química , Doença de Emaciação Crônica/etiologia , Substituição de Aminoácidos , Animais , Proteínas Priônicas/genética , Dobramento de Proteína
5.
J Biol Chem ; 295(15): 4985-5001, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32111742

RESUMO

Chronic wasting disease (CWD) is caused by an unknown spectrum of prions and has become enzootic in populations of cervid species that express cellular prion protein (PrPC) molecules varying in amino acid composition. These PrPC polymorphisms can affect prion transmission, disease progression, neuropathology, and emergence of new prion strains, but the mechanistic steps in prion evolution are not understood. Here, using conformation-dependent immunoassay, conformation stability assay, and protein-misfolding cyclic amplification, we monitored the conformational and phenotypic characteristics of CWD prions passaged through deer and transgenic mice expressing different cervid PrPC polymorphisms. We observed that transmission through hosts with distinct PrPC sequences diversifies the PrPCWD conformations and causes a shift toward oligomers with defined structural organization, replication rate, and host range. When passaged in host environments that restrict prion replication, distinct co-existing PrPCWD conformers underwent competitive selection, stabilizing a new prion strain. Nonadaptive conformers exhibited unstable replication and accumulated only to low levels. These results suggest a continuously evolving diversity of CWD conformers and imply a critical interplay between CWD prion plasticity and PrPC polymorphisms during prion strain evolution.


Assuntos
Encéfalo/patologia , Adaptação ao Hospedeiro , Polimorfismo Genético , Proteínas PrPC/genética , Doença de Emaciação Crônica/genética , Animais , Encéfalo/metabolismo , Cervos , Camundongos , Camundongos Transgênicos , Doença de Emaciação Crônica/patologia
6.
Anal Chem ; 92(1): 1276-1284, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31815434

RESUMO

Chronic wasting disease (CWD) is the only prion disease naturally transmitted among farmed and free-ranging cervids (deer, elk, moose, etc.). These diseases are always fatal and have long asymptomatic incubation periods. By 2019, CWD-infected cervids had been detected in 26 states, three Canadian provinces, South Korea, Norway, Finland, and Sweden. Prions (PrPSc) replicate by inducing a normal cellular prion protein (PrPC) to adopt the prion conformation. This prion templated conformational conversion is influenced by PrPC polymorphisms. Cervid PrPC contains at least 20 different polymorphic sites. By using chymotrypsin, trypsin, or trypsin followed by chymotrypsin to digest denatured cervid PrP, 19 peptides suitable for multiple reaction monitoring (MRM)-based analysis and spanning positions 30-51, 61-112, and 114-231 of cervid PrP were identified. Ten of these peptides span polymorphism-containing regions of cervid PrP. The other nine contain no polymorphisms, so they can be used as internal standards. Calibration curves relating the area ratios of MRM signals from polymorphism-containing peptides to appropriate internal standard peptides were linear and had excellent correlation coefficients. Samples from heterozygous (G96/S96) white-tailed deer orally dosed with CWD from homozygous (G96/G96) deer were analyzed. The G96 polymorphism comprised 75 ± 5% of the total PrP from the G96/S96 heterozygotes. Heterozygous animals facilitate conversion of different PrPC polymorphisms into PrPSc. This approach can be used to quantitate the relative amounts of the polymorphisms present in other animal species and even humans.


Assuntos
Polimorfismo Genético/genética , Proteínas Priônicas/genética , Doença de Emaciação Crônica/genética , Animais , Animais Selvagens , Cervos , Espectrometria de Massas , Camundongos , Camundongos Transgênicos
7.
BMC Vet Res ; 15(1): 50, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717795

RESUMO

BACKGROUND: Chronic wasting disease (CWD) is a prion disease affecting members of the Cervidae family. PrPC primary structures play a key role in CWD susceptibility resulting in extended incubation periods and regulating the propagation of CWD strains. We analyzed the distribution of abnormal prion protein (PrPCWD) aggregates in brain and peripheral organs from orally inoculated white-tailed deer expressing four different PRNP genotypes: Q95G96/Q95G96 (wt/wt), S96/wt, H95/wt and H95/S96 to determine if there are substantial differences in the deposition pattern of PrPCWD between different PRNP genotypes. RESULTS: Although we detected differences in certain brain areas, globally, the different genotypes showed similar PrPCWD deposition patterns in the brain. However, we found that clinically affected deer expressing H95 PrPC, despite having the longest survival periods, presented less PrPCWD immunoreactivity in particular peripheral organs. In addition, no PrPCWD was detected in skeletal muscle of any of the deer. CONCLUSIONS: Our data suggest that expression of H95-PrPC limits peripheral accumulation of PrPCWD as detected by immunohistochemistry. Conversely, infected S96/wt and wt/wt deer presented with similar PrPCWD peripheral distribution at terminal stage of disease, suggesting that the S96-PrPC allele, although delaying CWD progression, does not completely limit the peripheral accumulation of the infectious agent.


Assuntos
Encéfalo/patologia , Cervos , Proteínas Priônicas/genética , Doença de Emaciação Crônica/patologia , Animais , Cerebelo/patologia , Suscetibilidade a Doenças , Lobo Frontal/patologia , Genótipo , Intestinos/patologia , Rim/patologia , Tecido Linfoide/patologia , Músculo Esquelético/patologia , Pâncreas/patologia , Polimorfismo Genético/genética , Doenças Priônicas/patologia , Doenças Priônicas/veterinária , Glândulas Salivares/patologia
8.
PLoS Pathog ; 13(8): e1006553, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28800624

RESUMO

Prion diseases are infectious neurodegenerative disorders of humans and animals caused by misfolded forms of the cellular prion protein PrPC. Prions cause disease by converting PrPC into aggregation-prone PrPSc. Chronic wasting disease (CWD) is the most contagious prion disease with substantial lateral transmission, affecting free-ranging and farmed cervids. Although the PrP primary structure is highly conserved among cervids, the disease phenotype can be modulated by species-specific polymorphisms in the prion protein gene. How the resulting amino-acid substitutions impact PrPC and PrPSc structure and propagation is poorly understood. We investigated the effects of the cervid 116A>G substitution, located in the most conserved PrP domain, on PrPC structure and conversion and on 116AG-prion conformation and infectivity. Molecular dynamics simulations revealed structural de-stabilization of 116G-PrP, which enhanced its in vitro conversion efficiency when used as recombinant PrP substrate in real-time quaking-induced conversion (RT-QuIC). We demonstrate that 116AG-prions are conformationally less stable, show lower activity as a seed in RT-QuIC and exhibit reduced infectivity in vitro and in vivo. Infectivity of 116AG-prions was significantly enhanced upon secondary passage in mice, yet conformational features were retained. These findings indicate that structurally de-stabilized PrPC is readily convertible by cervid prions of different genetic background and results in a prion conformation adaptable to cervid wild-type PrP. Conformation is an important criterion when assessing transmission barrier, and conformational variants can target a different host range. Therefore, a thorough analysis of CWD isolates and re-assessment of species-barriers is important in order to fully exclude a zoonotic potential of CWD.


Assuntos
Polimorfismo de Nucleotídeo Único , Proteínas Priônicas/genética , Doença de Emaciação Crônica/genética , Animais , Western Blotting , Cervos , Modelos Animais de Doenças , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Reação em Cadeia da Polimerase , Conformação Proteica
9.
J Virol ; 89(24): 12362-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423950

RESUMO

UNLABELLED: Transmission of chronic wasting disease (CWD) between cervids is influenced by the primary structure of the host cellular prion protein (PrP(C)). In white-tailed deer, PRNP alleles encode the polymorphisms Q95 G96 (wild type [wt]), Q95 S96 (referred to as the S96 allele), and H95 G96 (referred to as the H95 allele), which differentially impact CWD progression. We hypothesize that the transmission of CWD prions between deer expressing different allotypes of PrP(C) modifies the contagious agent affecting disease spread. To evaluate the transmission properties of CWD prions derived experimentally from deer of four PRNP genotypes (wt/wt, S96/wt, H95/wt, or H95/S96), transgenic (tg) mice expressing the wt allele (tg33) or S96 allele (tg60) were challenged with these prion agents. Passage of deer CWD prions into tg33 mice resulted in 100% attack rates, with the CWD H95/S96 prions having significantly longer incubation periods. The disease signs and neuropathological and protease-resistant prion protein (PrP-res) profiles in infected tg33 mice were similar between groups, indicating that a prion strain (Wisc-1) common to all CWD inocula was amplified. In contrast, tg60 mice developed prion disease only when inoculated with the H95/wt and H95/S96 CWD allotypes. Serial passage in tg60 mice resulted in adaptation of a novel CWD strain (H95(+)) with distinct biological properties. Transmission of first-passage tg60CWD-H95(+) isolates into tg33 mice, however, elicited two prion disease presentations consistent with a mixture of strains associated with different PrP-res glycotypes. Our data indicate that H95-PRNP heterozygous deer accumulated two CWD strains whose emergence was dictated by the PrP(C) primary structure of the recipient host. These findings suggest that CWD transmission between cervids expressing distinct PrP(C) molecules results in the generation of novel CWD strains. IMPORTANCE: CWD prions are contagious among wild and captive cervids in North America and in South Korea. We present data linking the amino acid variant Q95H in white-tailed deer cellular prion protein (PrP(C)) to the emergence of a novel CWD strain (H95(+)). We show that, upon infection, deer expressing H95-PrP(C) molecules accumulated a mixture of CWD strains that selectively propagated depending on the PRNP genotype of the host in which they were passaged. Our study also demonstrates that mice expressing the deer S96-PRNP allele, previously shown to be resistant to various cervid prions, are susceptible to H95(+) CWD prions. The potential for the generation of novel strains raises the possibility of an expanded host range for CWD.


Assuntos
Genótipo , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/metabolismo , Animais , Cervos , Camundongos , Camundongos Transgênicos
10.
Iatreia ; 27(3): 330-336, jul.-set. 2014. ilus
Artigo em Espanhol | LILACS | ID: lil-720255

RESUMO

Se presenta el caso de una mujer de 64 años con un cuadro clínico de ocho meses de duración, consistente en deterioro motor y cognitivo, que progresó rápidamente. Recibió tratamiento con quinacrina sin obtener beneficios y falleció en estado terminal, por choque séptico secundario a bronconeumonía por broncoaspiración. El cerebro fue donado para investigación y su estudio histopatológico reveló la presencia de lesiones espongiformes, astrogliosis y depósitos de proteína priónica (PrPRes) confirmados por Western blot. Todos estos rasgos se consideran característicos de la enfermedad por priones. Con este caso, no solo se informa sobre una enfermedad infrecuente en la casuística colombiana, sino que por primera vez en el país se usan simultáneamente la inmunohistoquímica y el Western blot como herramientas para el diagnóstico de estas enfermedades.


We report the case of a 64 year-old woman with motor and cognitive deterioration that progressed rapidly during eight months. She was unsuccessfully treated with quinacrine, and died in a terminal status, by septic shock secondary to bronchopneumonia by broncho-aspiration. The brain was donated for research and the histopathological analysis showed spongiform changes, astrogliosis and prion protein (PrPRes) deposits, confirmed by Western blot (WB). These features are considered characteristic of prion diseases, which are uncommon in Colombia. We highlight that its diagnosis was made for the first time in this country by the simultaneous use of immunohistochemistry and Western blot.


Assuntos
Humanos , Feminino , Pessoa de Meia-Idade , Príons , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/patologia , Western Blotting/métodos
11.
PLoS One ; 6(3): e17450, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21445256

RESUMO

Analysis of the PRNP gene in cervids naturally infected with chronic wasting disease (CWD) suggested that PRNP polymorphisms affect the susceptibility of deer to infection. To test this effect, we orally inoculated 12 white-tailed deer with CWD agent. Three different PRNP alleles, wild-type (wt; glutamine at amino acid 95 and glycine at 96), Q95H (glutamine to histidine at amino acid position 95) and G96S (glycine to serine at position 96) were represented in the study cohort with 5 wt/wt, 3 wt/G96S, and 1 each wt/Q95H and Q95H/G96S. Two animals were lost to follow-up due to intercurrent disease. The inoculum was prepared from Wisconsin hunter-harvested homozygous wt/wt animals. All infected deer presented with clinical signs of CWD; the orally infected wt/wt had an average survival period of 693 days post inoculation (dpi) and G96S/wt deer had an average survival period of 956 dpi. The Q95H/wt and Q95H/G96S deer succumbed to CWD at 1,508 and 1,596 dpi respectively. These data show that polymorphisms in the PRNP gene affect CWD incubation period. Deer heterozygous for the PRNP alleles had extended incubation periods with the Q95H allele having the greatest effect.


Assuntos
Polimorfismo Genético , Príons/genética , Doença de Emaciação Crônica/genética , Animais , Western Blotting , Cervos , Progressão da Doença , Predisposição Genética para Doença , Imuno-Histoquímica , Doença de Emaciação Crônica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...